Mean Median Mode Calculator

Calculate mean, median, mode along with minimum, maximum, range, quartiles, and sum for a set of data. Perfect for statistics, data analysis, & mathematical calculations. Perfect for statistics, data analysis, and mathematical calculations.

Enter Data Set

Enter values separated by commas or spaces. You can also copy and paste lines of data from spreadsheets or text documents.

Example Data Sets

Supported Formats

  • Comma-separated: 1, 2, 3, 4
  • Space-separated: 1 2 3 4
  • Line-separated (paste from Excel)
  • Mixed separators: 1, 2 3; 4

Statistical Results

Enter data values to see statistical calculations

Advanced Statistics

Enter data to see quartiles, outliers, and more


How to Use This Mean Median Mode Calculator

Our statistical calculator makes it easy to analyze data sets and understand central tendency measures. Simply enter your data values separated by commas or spaces, and instantly see comprehensive statistical analysis including mean, median, mode, quartiles, and outlier detection.

What are Mean, Median, and Mode?

Mean, median, and mode are all measures of central tendency in statistics. In different ways they each tell us what value in a data set is typical or representative of the data set.

Mean (Average)

The mean is the same as the average value of a data set and is found using a calculation. Add up all of the numbers and divide by the number of numbers in the data set.

Median

The median is the central number of a data set. Arrange data points from smallest to largest and locate the central number. If there are 2 numbers in the middle, the median is the average of those 2 numbers.

Mode

The mode is the number in a data set that occurs most frequently. Count how many times each number occurs in the data set. The mode is the number with the highest tally.

How to Find the Mean

  1. Add up all data values to get the sum
  2. Count the number of values in your data set
  3. Divide the sum by the count

Understanding Quartiles and Outliers

Quartiles divide your data into four equal parts. Q1 (first quartile) marks the 25th percentile, Q2 is the median (50th percentile), and Q3 (third quartile) marks the 75th percentile. The Interquartile Range (IQR) is Q3 - Q1 and helps identify outliers.

Outliers are data points that fall significantly outside the typical range. Our calculator uses the standard IQR method: any value below Q1 - 1.5×IQR or above Q3 + 1.5×IQR is considered an outlier.

Common Applications

Education: Analyzing test scores, grade distributions, and academic performance metrics.Business: Sales data analysis, performance metrics, and quality control measurements.Research: Scientific data analysis, survey results, and experimental measurements.Sports: Performance statistics, scoring analysis, and player comparisons.

Tips for Data Analysis

When analyzing data, consider all measures together. The mean can be affected by outliers, making the median a better measure of central tendency for skewed data. The mode is especially useful for categorical data or when you need to know the most common value. Always check for outliers as they may indicate data entry errors or unusual conditions that warrant investigation.

Share